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Abstract 0 Theoretical aspects of the influence of complex forma- 
tion on transport across a diffusional barrier of three species, 
participating in an association-dissociation reaction, are presented. 
On the basis of solution of a nonlinear differential equation derived 
from equations of continuity, valid for stationary states, when dif- 
fusion coefficients are constants and coupling between fluxes of 
different species is ignored, it is shown that the usual assumption 
that the complex formation reaction is at equilibrium at all loca- 
tions in the system is not valid, except when the concentration of 
one of the reactant species is maintained equal o n  both sides of the 
membrane. In the general case, methods of calculation of reaction- 
rate profiles and concentration profiles to any desired order of ap- 
proximation in the inhomogeneous diffusional barrier region from 
experimentally measurable quantities are included. The method of 
computing the association-rate and di5sociation-rate constants from 
suitable transport measurements is presented. 
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In a series of papers on the effect of complex forma- 
tion on drug absorption, Reuning and Levy (1-3) 
presented experimental information and analysis of a 
model describing the overall transfer of a drug across a 
diffusional barrier in the presence of a complexing 
agent. Their experimental setup is that specified con- 
centrations of a mixture of (Y (caffeine) and p (salicyl- 
aniide) are placed in a conical flask of relatively large 
volume and well stirred. A small amount of solution 
containing p is placed in a nylon bag and suspended in the 
large volume mixture. Samples of solution in the nylon 
bag are withdrawn at  regular time intervals and analyzed 
for total concentrations of a and p in the nylon bag. 

The basic assumption in these experiments is that a 
and 0, when present together in solution, form a com- 
plex y represented by the reaction: 

L L  
f fSPZ- r  (Eq. 1) 

where kl  and k,  are the rate constants for the associa- 
tion--dissociation reaction. The equilibrium constant, 
K = (kl/kr), is determined by various methods to be 
30-50 I.jmole. It is assumed that the reaction repre- 
sented by Eq. 1 is at equilibrium at all locations in the 
system and that the species transport across the diffu- 
sional barrier at a rate proportional to their respective 
concentration gradients. Experimentally, it is deter- 
mined that species a permeates the diffusional barrier 
much more slowly than species p. 

A series of experiments with varying initial concen- 
trations of in the nylon bag and specified concentra- 
tion of a and /3 in the outside solution was performed; 
the time variation of concentrations of in the nylon 

bag was determined. The fraction of total amount of 
p present in complexed form was computed and utilized 
in the calculation of the stability constant for complex 
formation. 

The principal objectives of this paper are to: (a) 
analyze the significance of experimental information 
obtained by the above-mentioned set of experiments, 
(b)  examine the validity of the basic assumptions in- 
voked in the interpretation of experimental data, and 
(c) present certain theoretical aspects of the influence of 
chemical reactions on the flux of species across a 
diffusional barrier which also participate in a reaction of 
the type presented in Eq. 1. If the reaction presented in 
Eq. 1 is not at  equilibrium, then, by necessity, the 
reaction-rate profileJE(x). 

J R ( X )  = klCa(x)CdX) - kzC-y(x) (Eq. 2) 

will be a function of position variable x in the in- 
homogeneous diffusional barrier under conditions of 
stationary states and nonsteady states. In Eq. 2, C,(x) 
is the local concentration of species IJ at a specified 
location x in the system. The position variable x is 
defined along a direction normal to the plane of the 
diffusional barrier. Both JR(x)  and C,(x) are indepen- 
dent of time under conditions of steady state and vary 
with time under nonsteady-state conditions. 

Later in this paper, expressions for the reaction-rate 
profile for nonsteady states and steady states are pre- 
sented. In the section, Nonstationary-State Conditions, 
the general aspects of the problem as dictated by equa- 
tions of continuity are discussed. In the section, Sta- 
tionary State (Reaction at Equilibrium), considerations 
valid for steady states when the reaction is at  equilib- 
rium at all locations of the diffusional barrier are pre- 
sented. In that section, it is shown that unless the con- 
centration of one of the species, (Y or p, is maintained 
the same in solutions on both sides of the diffusional 
barrier, the reaction-rate profile will be nonvanishing in 
the inhomogeneous region, The inhomogeneous char- 
acter of the diffusional barrier is responsible for the 
maintenance of a stationary-state reaction-rate profile. 
In  a later section, an expression is presented for the 
reaction-rate profile valid in the inhomogeneous region 
when diffusion coefficients are regarded as constants 
and when coupling between fluxes of different species 
may be ignored. One may compute the reaction-rate 
profile and the effect of chemical reaction on flux of a 
specified species across a diffusional barrier. 

Reuning and Levy (1-3) considered the possible 
occurrence of dimerization of (Y and the possibility of a 
2 :  1 complex formation, in addition to the reaction of 
the type presented in Eq. 1, occurring in the system. For 
the sake of brevity, it is assumed that only the reaction 
represented by Eq. 1 occurs in the system presented here. 
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NONSTATIONARY-STATE CONDITIONS Under nonstationary-state conditions, one has: 

C$’ = (Da/Dg)Ca” + g1 (Eq. 10a) 

Cy” = -(Da/Dy)Co” + gz (Eq. 106) 

gi = (I/Da)(Ca - C p )  (Eq. 104 

gz = -(l /DyXCa + 6,) 0%. 104 

The third basic assumption is now made-that both gl and gz are 
independent of the position variable. The implication of this as- 
sumption is that the departure of the state of the system from 
stationary states is small. If this assumption is valid, it is possible to 
express: 

C d x )  = (Da/Ds)Ca(x) + (gJ2)x2  + rlx + r2 (Eq. l la)  

Cy(x) = -(Da/D,)Ca(x) + (sd2)x2 + r3x + r4 (Eq. 116) 

Substitution of these equations into Eq. 2 enables one to express 
the reaction-rate profiles in a inhomogeneous diffusional barrier 
under conditions of nonstationary states as: 

It is both interesting and illuminating to begin with the condi- 
tions valid for nonstationary state. Experiments of the type men- 
tioned previously yield measurement of (dC,II/dt), where Corr is the 
concentration of species u in the nylon bag and t is the time variable. 
In the following, time derivatives are denoted with a super dot and 
quantities corresponding to stationary states are denoted with an 
asterisk to distinguish them from corresponding quantities of 
nonsteady-state conditions. When reaction of the type represented 
in Eq. 1 takes place in the system, one has the equations of con- 
tinuity for the three species: 

Ca = -V.Ja(x)  - JR(x) (Eq. 3a) 

C,j = -v .Ja(x)  - JR 0%. 36) 

C y  = -v .JY + JR 0%. 3c) 

where J, is the matter flux (in moles per unit area per unit time) of 
species u. So long as one considers only one-dimensional transport, 
i.e., transport along an axis normal to the plane of the membrane, 
one may replace V J ,  by (dJ,,/dx) = J,,’. The first derivative with 
respect to position variable is denoted by a single prime. The second 
derivative with respect to x is denoted by a double prime. 

Within the spirit of irreversible thermodynamics and existence 
of nonvanishing interactions between molecules across space, the 
flux of a molecule of a specified species is correlated with the posi- 
tion and fluxes of all other molecules present in the system (4-9). If 
one now assumes that the influence of fluxes of other species on 
the flux of a specified species may be ignored and that the flux of a 
specified species is proportional to its concentration gradient as a 
first approximation, in the spirit of Fick’s equation, one may write: 

Ja = -DqCq’ (Eq. 4) 

where D ,  is the diffusion coefficient of species u in the system. 
In principle, D,  is dependent on concentration profiles of all species 
present in the inhomogeneous system, given by complicated ex- 
pressions of molecular theory (10). Thus, the diffusion coefficient is 
a function of the position variable. If one adopts, as a second ap- 
proximation, the assumption that diffusion coefficients may be 
regarded as constants, one may rewrite the equations of continuity 
as : 

Ca = -DaCa” - JR (Eq. 5 4  

e g  = -DgCg“ - JR (Eq. 56) 

Cy = -DD,Cy“ + JR (Eq. 5 4  

Under steady-state conditions, all explicit time derivatives must 
vanish. Thus one recovers a basic equation valid for stationary 
states: 

-Jal = -Jp’ = J,,’ = JR 0%. 6)  

Equation 6, along with the assumed validity of Eq. 4, formed the 
basis for the derivation of a (nonlinear) differential equation for the 
reaction-rate profile by Blumenthal and Katchalsky ( 1  l)--uiz., 

JR*(x) = ~ - ‘ J R *  + 2k1Ca’C~’ W. 7) 

h-’ = kl{(C,IDp) + (C , /Da) )  + (kz/D,) (Eq. 8) 

In Eq. 8 ,  C, refers to the stoichiometric concentration of species u, 
when the reaction of Eq. 1 is at equilibrium and the JR of Eq. 2 
vanishes identically. The h is defined as the relaxation length for the 
reaction in the system and is constant independent of position vari- 
able x due to the assumed constancy of diffusion coefficients. 
Equation 7 is a nonlinear differential equation for the reaction-rate 
profile in the inhomogeneous diffusional barrier under conditions 
of steady state. Blumenthal and Katchalsky (11) obtained the solu- 
tion of Eq. 7, neglecting the nonlinear term UrlCa’Cp’. A critical 
examination of this approximation is presented elsewhere (1 2). 

Under conditions of steady states, one has from Eqs. 5a-c that: 

Cp” = (Da/Dp)Ca” (Eq. 9 4  
CT” = -(Da/D,)Ca” (Eq. 96) 

where : 

= P = (1IDaXqa - 4 4  (Eq. 13a) 

r2 = Cg(0) - (Da/Ds)Ca(0) (Eq. 136) 

r3 = 4 = ( l /Dy)(qa + qr) (Eq. 13c) 

r4 = CJO) + (DalDr)Ca(O) (Eq. 13d) 

v 2  = (kz/D,) + (kl/DaDdiCa(0)Da + Cg(0)Dol (Eq. 1 3 4  

ai = ( 1 / i ! ) { d f C a ( x ) / d x f }  jz=o (Eq. 1 3 f )  

In these equations, Ca(0) is the concentration of species Q at loca- 
tion x = 0, where inhomogeneity begins in the diffusional barrier. 
The constant parameter 0 2  shares some similarity with of Eq. 
8 but is different from it; r )  becomes identical with h-’ if the reaction 
of Eq. 1 is at equilibrium at location x = 0. 

In a later section, the reaction-rate profile, JR*(x), at steady state is 
evaluated as the solution of certain nonlinear differential equations 
and expressed as: 

JR*(x) = Sixi (Eq. 14) 
i = O  

Comparison of the expressions for constant coefficients S,‘s and 
Ri’s indicates that: 

Ro = So RI = SI (Eq. 15a) 

Rz - Sz = ‘/z { klCa(O)gi - kzgz 1 (Eq. 15b) 
Rk - Sk = (k1g112) G - a  k >  3 (Eq. 15c) 

In other words, the departure of the state of the system from 
stationary states affects only coefficients of order greater than (9). 
So long as the reaction rate is either constant or a linear function 
of the position variable in the inhomogeneous diffusional barrier, 
the influence of chemical reactions on fluxes across a membrane 
approximates to the stationary-state calculations. 

Vol. 60, No. 6, June 1971 IJ 887 



STATIONARY STATE (REACTION AT EQUILIBRIUM) 

In this section, a nonlinear differential equation is derived for a 
function, G(x), related to concentration profiles of the three species 
participating in the reaction; it is valid when diffusion coefficients 
are constants and coupling between fluxes may be ignored. On 
the basis of the assumption that the reaction of Eq. 1 is at equi- 
librium in the inhomogeneous diffusional barrier, the solution 
of the differential equation is analyzed, yielding relations between 
the observed flux of a specified species and the stability constant 
of the complex. The reaction can be at equilibrium in the inhomo- 
geneous medium if and only if the concentration of one of the reac- 
ting species is maintained constant throughout the system. In 
other cases, thz reaction rate of Eq. 2 cannot be nonvanishing in- 
side the diffusional barrier under steady-state conditions subject to 
the validity of the assumptions contained in the derivation of the 
nonlinear differential equation for G(x). 

When one assumes that matter fluxes are independent of each 
other and proportional to their respective concentration gradients, 
as presented in Eq. 4, one has from Eq. 6:  

-Ja = I(x) + ~a (Eq. 16a) 

- J p  = Kx) + 40 (Eq. 16h) 

J ,  = 4h.) + 4, (Eq. 16c) 

I ( x )  = JE*(X)dX (Eq. 16d) 

(Eq. 16e) Ja*(x) - Jp*(x) = (yp - ye) = a constant 

Ja*(.u) + J,*(x) = (4, - qa) = another constant (Eq. 16f)  

If the species do not participate in the reaction to form a complex 
then the measured flux, J,, in the absence of a chemical reaction 
willequal -qu. When one has a mixture ofchemically noninteracting 
species transporting across a diffusional barrier, the fluxes of each 
species are constant under stationary states. When three components 
of a mixture participate in the reaction of Eq. 1 ,  then the fluxes of 
these three species are no longer independent of the position vari- 
able. However, linear combinations of the fluxes of two species, 
as presented in Eqs. 16a-f, remain constant independent of the posi- 
tion variable. 

Equations 16a-f, along with Eq. 4 and the assumption of con- 
stant diffusion coefficients, yield the following relations for the 
concentration profiles of the three species: 

S 

C ~ X )  = (G/Da) + (qa/Da)-r f Ka 

Cdx) = (G/Dp) + (qp/DdX + KO 

C,(x) = -(G/D,) - (q,/&)x + K ,  

(Eq. 170) 

(Eq. 176) 

(Eq. 1 7 ~ )  

G G ( x )  = I(x)dx (Eq. 17d) S 
where K,, Kp,  and K ,  are integration constants. It is evident 
that KO will equal C,(O), if the constant term of any of the func- 
tion G(x)  vanishes. Substituting expressions 17a-d into Eq. 2, one 
obtains the following nonlinear differential equation for G(x): 

G" = pG2 + v2G + uGx + A X $  + BX + JH(O) (Eq. 18) 

where: 

G" = J R * ( X )  

J R ( O )  = klKaKp - knK, 

/.I = (k , /DaDp) 

7' = (kr/D,) + p(KaDa + KoDoI 

a = P(4a + YO) 

'4 = We48 

B = (k~q, /D,)  + P ( KaDaqO + KpDNa 1 
Equation 18 is valid for inhomogeneous regions provided the dif- 

fusion coefficients are constant and fluxes are given by Eq. 4. The 
coefficients p, v2, a, A ,  B, and JR(O) are constants independent of 
the position variable x .  

If the assumption that the reaction is at equilibrium inside every 
location of the diffusional barrier is valid, then it follows that: 

G" = JR*(x) = 0 0%. 19) 

Equation 19 demands that the function G ,  satisfying Eq. 18, can 
at best be a linear function of x ,  represented by: 

C ( x )  = a + bx (Eq. 201 

where a and b are constants. Substituting Eq. 20 into Eq. 18, one 
obtains 

x2P + x Q  + A = 0 (Eq. 21) 

(Eq. 22a) 

(Eq. 226) 

(Eq. 2 2 )  

Equation 21 is a polynomial in x, equal to zero. Recalling that in 
order for a polynomial of varying powers of x to equal zero, the 
coefficients of every power of x must identically vanish, one has 
P = Q = R = 0. One obtains from Eqs. 22a and 22c that: 

P = pb' + ab + A 

Q = 72b + 2 p ~ b  f uu + B 

R = pa2 + 7% + J A O )  

a = - (?7' /2~) f (7)'/2/1)[1 - { ~ ~ R ( O ) P / ~ ~ ~ ] ~ ~ ~  

b = -(u/2p) f (u/2p)[l - ( 4 p A / u 2 ) ] ' / ~  

(Eq. 23a) 

(Eq. 236) 

Since the reaction is at equilibrium everywhere, one has 

a = 0 or a = - ( v 2 / ~ )  (Eq. 24a) 

b = -qa or h = -qp (Eq. 24b) 

Substituting these results in Eq. 22b, which should also vanish, one 
obtains: 

when b = -qa and a = 0, or - v z / p  (Eq. 25a) 

when b = -qD and a = 0, or -q2/p (Eq. 25b) 

The two expressions for B and v2qa obtained from Eq. 18 are equal 
ifeither: 

q N  = 48 = q?' (Eq. 26) 

B = q2q 

B = V2qa  

or : 

qe = {kiD?qp + k;?Dpq,) IksDp + k~KaD,l-' (Eq. 27) 

Similarly, the two expressions B and q2qp become identical if either 
Eq. 26 is satisfied or : 

~p = (kzDaqy + k l K p D ~ a 1  I h D a  + ~IKoDYI- '  0%. 28) 

The validity of Eq. 26along with Eqs. I70-dand 4 demands that the 
gradients of all three species vanish across the diffusional barrier. In 
other words, Eq. 26 describes the equilibrium state of the whole 
system. When one chooses the value b = -qp ,  one has: 

Cp' = 0 (Eq. 29a) 

Ca' = (qa - s ~ ) / D a  (Eq. 296) 

The rigorous validity of Eq. 246, when the reaction is at equilib- 
rium in the diffusional barrier, and constant diffusion coefficients 
require that the concentration gradient of either a or @ should van- 
ish. Conversely, if the gradients of the reacting species a and 0 do 
not vanish across the diffusional barrier, then Eq. 20 cannot be a 
solution of Eq. 18 and, therefore, the reaction cannot be at equilib- 
rium in the inhomogeneous diffusional barrier. In addition, the reac- 
tion rate cannot even be constant in the inhomogeneous diffusional 
barrier if either of the gradients of the reacting species does not 
vanish. Inspection of Eq. 18 suggests that under no circumstance 
can the function G be a quadratic function of x .  

Assuming that experiments are carried out maintaining the con- 
centration of @ the same on either side of the membrane, and that 
measurements of flux of a, Ja*, are obtained in the presence of vary- 

888 0 Joouma( of Pharmaceutical Scietices 



ing concentrations of p on both sides of the membrane, one has from 
Eq. 28: 

Ja*(Cg) = (47 - qa)(l + KKB(Dy/Da))-' (Eq. 30) 

where K = (k l /k2)  and Kg = Cg' when a = 0. 
If Cp = 0, then the flux of a would have been: 

Ja0* = J0*(Cg = 0) = -qa (Eq. 31) 

Thus, in the presence of 0, the additional flux of a! caused by the 
complex-forming reaction in the system, when the reaction is at 
equilibrium everywhere, is given by: 

Je*(Cg) - Jn*(Cs = 0) = (KCgDf la  - q y D e )  X 
[Da + KCgDyl-' (Eq. 32) 

Therefore, from the measurements of fluxes Ja,  under steady state 
in the presence of known concentrations of p on either side of the 
diffusional barrier, and knowledge of D,, D,, qa. and q,, one can 
compute the stability constant K of the complex using Eq. 22; qa 
and qy are the negatives of the fluxes of species a! and y obtained 
for the same diffusional barrier in the absence of the other two 
species. 

The conclusions of this section and Eq. 22 may be independently 
derived by the following simpler argument. Under stationary state, 
when the reaction rate vanishes, one has from Eqs. 4 and 6 that C,' 
should be a constant when D, is a constant. However, from Eq. 2, 
one has : 

(Eq. 33) 

The right-hand side of Eq. 33 will be a constant if and only if either 
Cat or Cg' vanishes. When Cg' = 0, one has from Eqs. 9u-b and 33: 

C,' = (ki/kz)(CaCg' + C&'a') 

I' = (qa + q y ) / D y  = {(KCsD, + Da)/DrlCa' (Eq. 34) 

Hence, 

Ja(Cp) - Ja(Cp = 0) = qa - [f'DyDa/(KCpDy + Ua)] (Eq. 3-51 

Equation 35 leads to Eq. 32. 

STATIONARY-STATE REACTION-RATE PROFILE 

By assuming that the concentration of species a! can be expanded 
in a Taylor series in terms of its concentration and derivatives 
about the position x = 0, the dependence of the reaction-rate profile 
in the inhomogeneous diffusional barrier on the position variable 
under nonsteady-state conditions was presented in Eqs. 12a-e. In 
this section, corresponding expressions will be obtained for steady 
states, valid when diffusion coefficients are constants and coupling 
between fluxes of different species is ignored. Instead of solving the 
nonlinear differential Eq. 7, the procedure involves finding solution 
of Eq. 18. Thus, both the concentration profiles and the reaction- 
rate profiles in the inhomogeneous region are obtained. As shown 
here, concentration and reaction-rate profiles can be computed to 
any order of powers of the position variable that one may desire, 
subject to an approximation presented in this section. Since the 
solutions on either side of the diffusional barrier are well stirred, the 
solutions on either side of the barrier can be regarded as homoge- 
neous; concentrations of the species remain uniform up to a region 
close to what one may call the boundaries of the membrane. It is the 
inhomogeneous character of the diffusional barrier that is responsi- 
ble for the maintenance of concentration profiles and reaction-rate 
profiles under steady state. 

Let the plane of the barrier where inhomogeneity begins cor- 
respond to the value of the position variable x = 0. The boundaries 
of inhomogeneity extend from x = 0 to x = h, where h is the thick- 
ness of the diffusional barrier. Since the concentrations of the 
species are analytical functions of the position variable, one may 
assume that the concentrations of the three species participating in 
the reaction at location x may be represented in terms of the con- 
centrations of the species at x = 0 as: 

C,(X) = CAO) + CIX + c c*xa 

6, = ( I/i!)[dzC~/dxz]~z-o 

(Eq. 36c) 

(Eq. 36d) 

2 = 2  

Substituting Eqs. 36a-d into Eq. 2, one obtains: 

JR*(X) = c S,X' (Eq. 37a) 

(Eq. 376) 

(Eq. 37c) 

a = O  

So = JR*(O) = kiCa(0)Ca(O) - kzC,(O) 

SI = kl{ C~(O)UI + Ca(O)bl} - kzcl 

Sz = ki (Ca(0)~z + Ca(0)bz + aibi}  - kzca (Eq. 3 7 4  
(Eq. 37c) S3 = ki( Ca(O)aa + Ca(O)63 + aibz + azbi } - k z ~ 3  

Validity of Eqs. 9a-b under steady states and the assumptions about 
constant diffusion coefficients requires that the Taylor expansion 
coefficients a,, b,, and cz are related by the relations: 

6% = (DaDg)az bl = (Da/DS)al + P (Eq. 3 8 ~ )  

C ,  = -(Da/Dy)ut CI = -(Da/Dy)ai + q (Eq. 386) 

P = (l/oa)lJa(x) - J~(x) l  

q = -(l/D?)lJa(x) + Jy(x)J 
Let the solution satisfying the nonlinear differential Eq. 18 be: 

(Eq. 38c) 

(Eq. 38d) 

Both p and q are constants. 

~ ( x )  = C mtxa (Eq. 39) 
t = O  

If &. 39 satisfies Eq. 18 identically, and if one has means of evaluat- 
ing the coefficients of every power of x of Eq. 39, one has solved the 
problem. Substitution of Eq. 39 in Eq. 18 yields the relations: 

(Eq. 40u) 

(Eq. 40b) 

(Eq. 41u) 
(Eq. 416) 

(Eq. 41c) 

(Eq. 41d) 

(Eq. 41e) 
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Hence, when mo = 0 or m2 = 0, 

ml = -(qa + &/2 f '/a[(qa - qp)2  + 4DaD,mbJ"2 

Upon rearrangement and squaring both sides, one obtains: 

(Eq. 46) 

D,Dpah = m12 + mdq, + + qaqp (Eq. 47a) 

m2 or mu = 0 (Eq. 47b) 

From Eqs. 38a--d, the constant coefficients SL's of Eqs. 37a-e may be 
reexpressed as: 

(Eq. 48a) 

(Eq. 486) 

S? = Dav2a2 + klaibi (Eq. 48c) 
I? - 1 

Sk = Dav2Uk + ki(Da/Da) aiaj f kipUk - I (Eq. 48d) 
< , j  = 1 

i + j = k  

where k >, 3 ,  P = (qp  - qa)/Dp, and 4 = (qa + q-,)lD-,. 
In the limit x tending to zero, one has from Eqs. 17a-d, when mu = 

- (s2//J), 

CdO) = Ka - (q2Dp/kl)  

Cp(0) = Kg - (qzDa/kl)  

C40) = Ky + (q2 /pDy)  

(Eq. 49a) 

(a. 496) 

(Eq. 49c) 

K,  = Ca' u = n,/3,y (Eq. 4 9 4  

When nio = 0, one has 

K, = C,(O) = C,' u = cr,/3,y (Eq. 50) 

where Car is the concentration of species u in the bulk homogeneous 
region on the left-hand side of the diffusional barrier. One may 
verify that So, the reaction rate at location zero, J R * ( ~ ) ,  is given by 
Eq. 48u, irrespective of whether Eq. 49 or 50 is utilized in the expres- 
sion 37b. 

Utilizing the expressions for the parameters presented in Eqs. 18, 
13, and 12 into Eq. 48b, oneevaluates: 

B - SI = qZDaal + q2yp + (2kzqylDy) 

= q2D& + q'qa + (2k2qrlD7) (Eq. 510) 

when mo = --(qZ/p), and 

SI - B v2Daal - q2qa - (2kzq-,/Dy) 

= v2Dpbl - qzqp - (2kzqy/Dy) (Eq. 51b) 

when m0 = 0. 
From Eqs. 51a-b and 41b, one obtains: 

tnl = Daal + (2k2qy/DyV2) - 9a (Eq. 520)' 

= Dpbl + (2k24y/Dy?2) - qa (Eq. 526) 

when mo = - (q2 /p ) ,  and 

mi = Daal - qa + (2k2&Dr42) 

= Dpbi - 48 + (2k2qylDy~')  

(Eq. 5 2 ~ )  

(Eq. 5 2 0  

when mo = 0. Equations 5%-d yield the result: (Daal - 0pb1 = 
qa - qp), in agreement with Eqs. 12a-e and 38a-d. 

Equations 5%-d yield m1 in terms of a1 or bl. It is convenient to 
express ml in terms of experimentally available quantities. This is 
achieved by utilizing the following relation, easily derived from Eq. 
46, valid when mo = 0: 

DaDaaibi = (ml + qa)(mi + 40) (Eq. 53) 

Note added in proof: The value of mi presented in Eq. 52 is only an 
approximation and is not a unique solution. ml equals -qa, -40, or f 
qr. respectively, when at, bl, or CI vanishes. mi assumes null value when 
diffusion coefficients vary with position. When diffusion coefficients are 
constants and UI, 61, and CI are nonvanishing, determination of a unique 
value for ml has not yet been achieved. 

(Eq. 54) 

(Eq. 55a) 
(Eq. 556) 

(Eq. 55c) 

(ml + q d m l  + qp)  = DaDpgth + (2v2m2/p) (Eq. 56) 

Utilizing Eqs. 52a and 526 in Eq. 56, one evaluates: 

Daal + Dab1 = (q4Dym2/kwqr) - (2k?qr/Dyv2) (Eq. 5 7 4  

Daai - Dab1 qa - 46 (Eq. 57b) 

Therefore, when mo = -(qz/p) f 0, one has: 

Daal = (qa - q6)/2 - (k2qy/Dyq2) + r 
DBbt = (4p - qo! / 2  - (k2qr/Dyq2) + C 

(Eq. 5 8 ~ )  

0%. 58b) 

m1 = 4 q a  + q0)/2 + (kzqy/Dyvz) + < (Eq. 5 8 ~ )  

where r = q4Dym2/(2 k2w-,). 
For Eqs. 51-58, the parameters Band s2 are given by Eq. 18, Sl is 

given by Eq. 37c and K ,  = C,(O), when mD = 0, and K,  = C,(O) + (qzDp/kl), Ka = Cp(0) + (7'Dalkd when m f 0. 
From Eq. 40b, one has, by equating coefficients of like powers of 

position variables, the relation: 

(Eq. 59) Sk = fk + 2)lk + 1)mR + 2 k>O 

From the nonlinear differential equation: 

DaCa" = JR*(x) (Eq. 60) 

one has : 

SA = (k 4- 2)(k + I)Daab + z (Eq. 61) 

Thus, 

(Eq. 62) DaUk = mk k > 2 

Equations 41a-e can be reexpressed for k 3 3 as: 

k - 1  

z , j  = 1 
i + j = k  

Thus, knowledge of mo, ml, mB. . .mk - completely determines the 
right-hand side of Eq. 63. The left-hand side of Eq. 63 equals 
(& f qlmk), the positive sign being applicable when mo = - ( q z / p )  
and the negative sign being valid when mo = 0. From Eqs. 59 and 
63, one has: 

~k - mk(v2 + 2pmo) = p ,z mim, + umk - 1 (Eq. 63) 

k-1 

i . j =  1 
i + j = A  

Sk = r ( q Z / k ( k  - 1)}& - 2 + p mimj + umb - (Eq. 64) 

Equation 64 expresses the fact that knowledge of lower order 
coefficients, Scs,  enables one to compute higher order coefficients. 
For example, when k = 4, one has: 

Sa = = ~ ( v ~ / 1 2 ) S ~  + (p/4)SoP + (S1/6)dqa + qp + 2m1) (Eq. 6 5 4  

= (ki/DaDp) (Eq. 656) 

In Eq. 65a, the negative sign is valid when mo = - (? * /p )  and the 
positive sign is valid when mo = 0. 

To summarize the results obtained so far, the interest is in com- 
puting the reaction-rate profiles in the inhomogeneous diffusional 
barrier as a function of the position variable, presented in Eqs. 37a- 
e, satisfying the differential Q. 18. Equations 37a-e are of little 
use unless one can compute the coefficients in terms of experimen- 

890 0 Jourttal of Pharmaceutical Scierzces 



tally measurable quantities. Equation 64 enables one to compute 
any desired coefficient Sk(k 3 3 ) ,  in terms of already obtained 
lower-order coefficients. 

When mo = 0, one has obtained: 

So = kiKaKp - kzK, Ka = Car (Eq. 66a) 

SI = m1T2 + B (Eq. 666) 

& = p { m 1 2  + mdqa + 48) + qaqpl + (~ 'S0 /2 )  

S3 = 1% + (S0d2)Iqu + qo + 2m11 
& = v2mk + p{qa + qb + 2m1 ]mk - I + 

(Eq. 6 W  
(Eq. 6 6 4  

k--2 
p mimj k > 3 (Eq. 66e) 

i . j  = 2 
i + j = k  

The knowledge of the rate constants (kl  and k2). diffusion coeffi- 
cients (Daq Do, and D,) of the three species participating in the 
reaction measured in homogeneous bulk phase, concentrations of 
these species (K,)  in the left-hand side of the membrane, and the 
fluxes of the species (qr) measured in the absence of the other two 
species across the same diffusional barrier enables one to compute SO, 
S1, and S2 using Eqs. 66a-e, valid when mo = 0. The value of ml re- 
quired for the said computation is presented in Eq. 55c. 

When mo = - ( v z / p ) ,  one has: 

So = kiKaKp - kzK7 

SI = --m1q2 + B - VYqa + 40) 

sz = p(mlz  + mdqa + 40) + qaqp1 - (v'SOP) 

(Eq. 67a) 

(Eq. 676) 

(Eq. 67c) 

S3 = --mag2 + (Sup/z){qa + qp + 2m11 (Eq. 6 7 4  

Sk = -mm2 + d q a  + qo + 2m1)mk - 1 + 
k--2 

i . j  = 2 
p c mimi k > 3  (Eq. 67e) 

i + j = k  

In Eqs. 67a-e, K ,  = CU1 # C,(O). Thus, SO = 2mz can be computed 
from knowledge of rate constants kt and kz and concentrations of 
the species in the left-hand side of the membrane; ml should be 
computed using Eq. 44. The parameter vz required for the calcula- 
tion is obtained from Eq. 18. Knowledge of SO,  SI, and SZ, obtained 
using Eqs. 67a-e, can be utilized to obtain any s k  as indicated in 
Eqs. 61 and 65a-6. However, one needs knowledge of SZ to solve for 
rnl using Eq. 44, and knowledge of ml is required to solve for SZ as 
indicated in Eq. 67c. Thus, in the general case, when mo # 0 and m2 
# 0, one must resort to an iterative procedure suggested elsewhere 
(12,13).  It is convenient to make the approximation that when mo # 
0, m2 = 0 and compute m1 using Eq. 58c. 

DISCUSSION 

The analysis presented in this paper is based on the assumption 
that the three species transporting across a diffusional barrier can 
participate in a reaction of the type presented in Eq. 1 .  In the second 
section, it was shown that the reaction-rate profile in the inhomoge- 
neous region can be expressed as a polynomial in the position vari- 
able, presented in Eqs. 12a-e, satisfying the dictation of equations of 
continuity when the three basic assumptions mentioned in the sec- 
tion are valid. It was shown that if the departure of the state of the 
system from stationary state can be regarded as small, it suffices to 
know the reaction-rate profile in the inhomogeneous diffusional 
barrier under conditions of stationary state. 

In the third section, a nonlinear differential equation (Eq. 18) for 
a function G(x), related to concentration profiles and reaction-rate 
profiles in the inhomogeneous region, was derived. Equation 18 is 
valid for stationary states when diffusion coefficients are constants 
and coupling between fluxes of different species can be ignored. On 
the basis of the solution of Eq. 18 and the usual assumption in- 
corporated that the reaction is at equilibrium at all locations in the 
system, it was shown that the reaction cannot be at equilibrium in 
the inhomogeneous region except when the concentration gradient 
of one of the reactant species vanishes across the diffusional barrier. 

When experiments are conducted that maintain the concentration 
of one of the reactant species equal on both sides of the membrane, 

the relation between the flux of the other reactant species and the 
stability constant of the complex was presented in Eq. 32. 

In the fourth section, the general solution of Eq. 18, when the 
reaction rate is nonvanishing in inhomogeneous regions, under con- 
ditions of stationary state, was obtained. In that section, it was 
indicated how the reaction-rate profile can be computed to any order 
of accuracy one desires by using experimentally available informa- 
tion. Thus, when the concentrations of the species at the location 
where inhomogeneity sets in equal the bulk concentrations [C,(O) 
= Car; mo = 01, or when the reaction is at equilibrium at the loca- 
tion where inhomogeneity begins (m2 = 0), one can safely assert that 
the coefficients Si's of Eqs. 37a-e can be computed and thus are 
known. 

The fluxes of the three species across the diffusional barrier under 
stationary-state conditions are given by: 

Ja = -qa - I ( x )  (Eq. 68a) 
(Eq. 686) 

(Eq. 68c) 

I(x) = c ISi/ i + l)}X'+'  (Eq. 6 8 4  

If the diffusional barrier extends from x = 0 to x = h, and the flux is 
measured in the right-hand side of the membrane, the observed 
fluxes will be: 

Ja(h) = -qa - I(h) (Eq. 69a) 

Jp(h) = -qp  - 4 h )  (Eq. 696) 

J7W = 9, + m) (Eq. 69c) 
I(h) = I(x = h) (Eq. 69d) 

where I(h) indicates the production or consumption of species in the 
inhomogenFous region due to the reaction, and h is of the order of 
about 100 A for lipid films and many biological membranes. 

The experiments of Reuning and Levy (1-3) yielded information 
about the rate of accumulation of, for example, species a in the 
second compartment, the nylon bag. Since the flux, Ja*, indicates 
the number of moles of a transferred per unit area per unit time, the 
product Ja* multiplied by area of the diffusional barrier should equal 
the rate of accumulation of the species in the nylon bag. Assuming 
that the area of the diffusional barrier remains constant, measured 
(dCaIZ/df) is proportional to Ja*, under conditions of steady state: 

i = O  

(dCalI/dr) = Ja(h)A (Eq. 70)  

If the experiments are conducted with varying amounts of Cpl in the 
left-hand side of the diffusional barrier and one measures (dCaII/df) 
for the same diffusional barrier, one can compute (d/dCpl)(dCarr/ 
df). This quantity should equal the right-hand side of Eq. 71 accord- 
ing to the theory presented in this paper, subject to neglect of (h4) 
order and higher order terms. The right-hand side of Eq. 71 can be 
computed from independently obtainable experimental quantities: 

(k1/2){~'h'Ca' + (Soh2/Du)J]  + Qh4) (Eq. 71)  

In obtaining the right-hand sid; of Eq. 71, one utilizes the rela- 
tions: 

(Eq. 72a) mo = 0 ;  C,' = K,; u = a,P,-y 

(dSo/dKp) = klCa' (Eq. 7%) 
(dsl/dK,3 = (40 - qa)/2 - (kz+,/DyT2) (Eq. 7 2 )  
(dSz/dKp) = (k1/2){7'Ka + (So/Da)1 (Eq. 7 2 4  

So = kiKaKp - kzKy (Eq. 72e) 

SI = m1q2 + B (Eq. 7 2 f )  

Sz =  mi' + mdqa + q d  + q&o) + (T'SUP) (Eq. 7%) 

If one now adopts the approximation that ( h 3 )  order and higher 
order terms may be neglected, it is evident from Eq. 71 that the slope 

of the plot of the quantity (Ah)-' ~ r$)\ against car 
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will equal the negative of the association-rate constant kl .  The inter- 
cept of the said plot will enable one to compute the dissociation- 
rate constant k ,  from knowledge of qa, q p ,  +,, and D,. 
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Pharmacodynamics of Chemotherapeutic Effects: 
Dose-Time-Response Relationships for 
Phase-Nonspecific Agents 

WILLIAM J. JUSKO 

Abstract 0 Pharmacodynamic relationships were developed to 
characterize the necrobiotic effects of phase-nonspecific chemo- 
therapeutic agents which attach irreversibly to cell receptors. The 
site of drug action is considered to be a specific body compartment, 
and target cell inactivation by the agent results from a bimolecular 
drug-receptor interaction. Turnover of cells is assumed to occur by 
natural synthetic and degradative processes. Based on these prem- 
ises, a log-linear relationship was evolved to relate the fraction of 
surviving cells to the drug level-time integral at the pharmacologic 
site. The integral was shown to be proportional to the dose and 
independent of the mode of administration when the entire drug 
level-time course is evaluated. Data from the literature for the 
effects of cyclophosphamide on three cell systems of mice demon- 
strate the usefulness and certain therapeutic implications of the 
equations. 

Keyphrases 0 Pharmacodynamics-dose-time-response relation- 
ships, phase-nonspecific agents 0 Chemotherapeutic agents, 
phase nonspecific-pharmacodynamic model 0 Dose-effect re- 
lationships--cyclophosphamide on cell systems of mice 

Considerable progress has been made in the develop- 
ment of kinetic relationships characterizing pharma- 
cologic effects. Levy (1)  showed that the intensity versus 
time course of many clinically observable pharmacologic 
effects may be described adequately by mathematical 
expressions based on the kinetics of drug elimination 
and on the established relationship between amount in 
the body and response. In turn, the simultaneous use of 
pharmacologic effect and pharmacokinetic data was 
shown to be an added dimension in the analysis of 
pharmacodynamic data (2). 

The pharmacologic response to most drugs can be 
quantitated in a log dose-linear effect manner. Such a 
relationship is essentially derived from the postulation 
of reversible interaction between drug and receptor 
(3, 4). The reversibility aspect of this mechanism pre- 
cludes application of most classical pharmacodynamic 
principles to therapy with certain antibiotics, anti- 
metabolites, and alkylating agents. The cytotoxic effects 
of such agents are usually dependent on the irreversible 
or covalent incorporation of drug into cell metabolic 
sites or pathways (5). The lack of a mathematical basis 
for predicting the clinical effects of chemotherapy and 
the clinical difficulties in measuring such effects have 
been partly responsible for the uncertainty involved in 
the design of appropriate dosage modes and schedules 
for chemotherapeutic agents (4). The purpose of this 
report is to develop pharmacodynamic principles that 
may be of quantitative and predictive value in the 
therapeutic use of such drugs. 

THEORETICAL 

A basic pharmacodynamic model for the characterization of the 
effects of chemotherapeutic agents is shown in Scheme I. The drug 
is introduced into the central compartment ( X , )  using a suitable 
mode of administration. The site of chemotherapeutic effect (X,) is 
considered to be a homogeneous compartment separate from the 
central volume of distribution. First-order transfer-rate constants 
between the two compartments are klz and kZ1, and the elimination- 
rate constant is kel. A portion of the dose of drug that reaches the 
pharmacologic site is involved in an irreversible reaction (rate con- 
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